Robin Richmond’s scheme for
Defining Mod Options in Admin>>Setup programs,
and Organizing those options into “Mod Settings Blocsks”.
(This document is substantially redundant with the TNG wiki article https://tng.lythgoes.net/wiki/index.php?title=Inner_Mod_Menus)

The problem
I have written numerous mods that have “options”, which have traditionally been implemented as Mod Manager Parameters (updated within the Mod Manager). I, like some other mod authors, have also implemented some mod options as custom TNG system variables that are defined in Admin>>Setup forms. “Mod Settings Blocks” (and the related “Inner Mod Menus”) are my attempt to establish consistency, clarity, and accessibility for all of my mod options.

When a TNG administrator wants to modify a mod option, it is not necessarily clear
· Which mod implements the behavior that the administrator wants to change,
· Whether the behavior is controlled by a Mod Manager Parameter or a TNG system variable, and, of course
· Where to go to change whatever setting is needs to be changed.

It is not necessarily clear This scheme is implemented by a PHP Include file that can be installed by any number of mods. Each mod installs the Include file as a "protected" file, so that it is not deleted when that mod is uninstalled, and so that each mod that needs it can install if it is not already installed. To put it another way, the Include file is installed by the first mod (that uses it) that is installed on a given TNG site.

This scheme supports new options in
· General Settings (admin_genconfig.php),
· Log Settings (admin_logconfig.php),
· Map Settings (admin_mapconfig.php),
· Chart Settings (admin_pedconfig.php), and
· Import Settings (admin_importconfig.php),
but not in Template Settings. (Note that the General Settings and Chart Settings have multiple subforms. In those pages, a parent layout table wraps a separate layout table for each subform.)

A mod using this scheme must put its mod option form fields in a new HTML layout table in the appropriate configuration program. A document.ready function in the Include file reorganizes each
mod's options into nested HTML layout tables in the Admin>>Setup program.

Native Admin>>Setup pages and forms
The native Admin>>Setup programs use form fields to define native TNG system variables. (Each program is associated with a single TNG config file, into which it saves the form field values as TNG system variables.

In all setup forms, the options are defined HTML layout tables. In most cases, the layout tables have two columns, one for an option label, and one for the form field. And, in most case, one option occupies one table row. Mod Settings Blocks have their own HTML layout table. Each Mod Settings Block is placed in a table row within the parent form.

Two of the Admin>>Setup programs
· admin_genconfig.php (Admin>>Setup>General Settings) and
· admin_pedconfig.php (Admin>>Setup>Chart Settings)
have subforms that consist of tables within the main layout table and that can be open and closed. Inside the subforms, the options are organized exactly as described above. In those programs, the Mod Setting Block code adds a new subform specifically for Mod Settings Blocks. A Mod Settings Block could be inserted into an existing subform if necessary, but (so far), they have all gone into the new subform.

The heading for the new subforms is “Robin’s Mods”. (I didn’t indent to use an eponymic name, but I just couldn’t come up with anything appropriately descriptive. For example, I considered “Mods”, but knowing that other mods insert their options within other subforms, I didn’t think that “Mods” worked.)

Each Mod Settings Block’s HTML table tag has several attributes that the Mod Settings Block Include file uses to organize multiple Mod Setting Blocks within a parent form.
1. class='rrConfigTable'
2. modname={the mod name, without spaces)
3. (Optional) subform={a subform id}, needed only in the two Admin>>Setup program with subforms. It defaults to the new subform’s ID, "robin".

Shared Mods Includes
Mod Settings Blocks are implemented through the Include file rrshared_modsettingblocks{v}.php. This file is one of three "Shared Mod Includes" files that are distributed with numerous mods in the “Shared Mod Includes” mod subfolder, RR-shared_mod_includes_v{x.y.z.v), where {x.y.z.v) the standard TNG mod version#.

All mods that use Share Mod Includes have %copyfile commands to install the necessary files. But, importantly, those %copyfile commands use the Mod Manager's "protected" flag so that
· Only the first mod that tries to include a Shared Mod Includes file will actually do so,
· The presence or absence of a file in a production folder will not cause any Mod Manager errors, and
· The file will not be removed when a mod that uses it is uninstalled.
Note that not all mods that contain the Share Mod Includes folder needs or tries to install all of the Shared Mod Includes files; they just install the file they need.

The full version number of the Shared Mod Include folder is like the full version number of a mod, in that the first three components represent the minimum TNG version in which the Shared Mod Include files work, and the final number is the incremental version number of the folder, which is incremented independently of the TNG version. However, the folder version number (that is, the last part of the full version number) is different form the corresponding incremental version number for mods in that it must be in the names of each file in the folder and each function within those files.

The presence of version numbers in the files and function is necessary because more than one version of a Shared Mod Include file can be present at the same time.
When a Shared Mod Includes file must be updated, all of those version numbers must be updated. In addition, each mods that use the new Include must be updated so that
· It installs the new Include file,
· The programs that it modifies Include the new Include file, and
· Function calls from any modified TNG program use the new function names.

[bookmark: _GoBack]In general, when a new version of the Shared Mod Includes folder is created, every mod that uses its Include files does not updated to use the new mod version. Only mods that need the new functionality really need to be updated proactively to use the new version. However, it is certainly prudent to update mods to use the new version when the mods are updated for other purposes.

Mod Settings Blocks		Page 1 of 3
