Robin Richmond’s scheme for
Defining Mod Options in Admin>>Setup programs,
and Organizing those options into visible blocks for each mod.
(This document is in early draft form.)

The problem
Like many mod authors, several of my mods have “options”, some of which are implemented as Mod Manager Parameters, and others of which are implemented through custom TNG system variables that are defined in Admin>>Setup pages. I can’t really say why some options are implemented one way, and some the other.

When a TNG administrator wants to modify a mod option, it is not necessarily clear
Which mod implements the behavior that the administrator wants to change,
Whether the behavior is controlled by a Mod Manager Parameter or a TNG system variable, and, of course
Where to go to change whatever setting is the change.

It is not necessarily clear This scheme is implemented by a PHP Include file that can be installed by any number of mods. Each mod installs the Include file as a "protected" file, so that it is not deleted when that mod is uninstalled, and so that each mod that needs it can install if it is not already installed. To put it another way, the Include file is installed by the first mod (that uses it) that is installed on a given TNG site.

This scheme supports new options in
· General Settings (admin_genconfig.php),
· Log Settings (admin_logconfig.php),
· Map Settings (admin_mapconfig.php),
· Chart Settings (admin_pedconfig.php), and
· Import Settings (admin_importconfig.php),
but not in Template Settings. (Note that the General Settings and Chart Settings have multiple subforms. In those pages, a parent layout table wraps a separate layout table for each subform.)

A mod using this scheme must put its mod option form fields in a new HTML layout table in the appropriate configuration program. A document.ready function in the Include file reorganizes each
mod's options into nested HTML layout tables in the Admin>>Setup program.

Native Admin>>Setup pages and forms
The native Admin>>Setup programs use form fields to define native TNG system variables. (Each program is associated with a single TNG config file, into which it saves the form field values as TNG system variables.

The Admin>>Setup programs all have a "main" HTML layout table.
In most Admin>>Setup programs, the form fields are defined in separate rows of the "main" layout table. Other mods (that is, mods that do not use this scheme) add their mod option form fields in new table rows in the appropriate form layout table.

Admin>>Setup pages place their form fields in a form layout table. The pages admin_genconfig (Admin>>Setup>>General Settings) and admin_pedconfig (Admin>>Setup>>Chart Settings) are special cases because they have multiple subforms. In those pages, each row of “main” layout contains a subform, which is defined by a div that contains its own layout table.

Attributes of the HTML table defined by each mod:
1. The table tab defines the following attributes:
a. class='rrConfigTable'
b. modname={the mod name, without spaces)
c. (Optional) subform={a subform id}. It defaults to "robin".
d. (Optional) group={a logical collection of mods}, e.g. "Places", "Media", "People". This group value is not currently used.
2. Form fields are organized in table rows within a single tbody element.

The JavaScript function rrOpenWikiPage opens a specified TNG Wiki page to a specific
section within page. Most mod articles in the Wiki have a named section that
describes the mod's options.
[bookmark: _GoBack]
